$4 \frac{\text { Command }}{\text { GSMFI }}$

Table of Contents

About Us 4
A Reliable Partner Offering 4
Solutions for All Drilling Environments Your One Stop Shop for All Products 5
from the Rig Floor to the BHA
Applications 6
Onshore Drilling 6
Sour Service Environments
Geothermal Drilling 8
Grades 9
Sour Service Grades 9
Drill Pipe 11
Drill Pipe 11
Heavy Weight Drill Pipe 13
Heavy Weight Drill Pipe 13
Heavy Weight Drill Pipe 16
Manufacturing Flow Chart
Heavy Weight Drill Pipe Data 18
HWDP Data - Sour Service 24
HWDP Performance Datasheet 28
Drill Collars 29
Drill Collars. 29
Drill Collar Manufacturing Flow Chart 32
Drill Collar Data 34
Drill Collar Performance Datasheet 38

Table of Contents (continued)

Accessories 39
Kelly Cock Valves . 39
Inside Blowout Preventer (I-BOP) 43
Retrievable Drop in Check Valve (RDCV). 46
Rotary Substitutes (Subs) 50
Pup Joints . 52
Stabilizers 53

Options.. . 54
Client Specs. 54
Hardbanding . 55
Coating 56
Make and Break. 57
Thread Protectors . 58

Contacts....................................... . 59

The data provided in this catalog is for general information only. While every
effort has been made to ensure the accuracy of all data and information contained herein, COMMAND SMFI assumes no responsibility or liability for loss, damage or injury resulting from the use of this material. All uses of the information presented in this catalog are at the user's oun risk and responsibility.© 2018 COMMAND SMFI. Unless othemise specified, COMMAND SMFI and its subsidaries are sole owners of all content induding and without limitation, all patents, trademarks, copynights and other intellectual property rights thereta.

A Reliable Partner Offering Solutions for All Drilling Environments

With the days of easily accessible oil \& gas fields becoming numbered, exploration and production is moving to even harsher environments. Drillers today contend with tougher operating conditions, greater technological challenges and increased risks. All the more reason to choose a partner with a proven track record of providing innovative solution packages that secure reliable operation and availability day in and day out, even under the most challenging conditions.

With experience in the world's most complex wells, COMMAND SMFI solutions to meet challenges head on in: \rightarrow Offshore environments with products capable of drilling:
$>$ in water depths exceeding $12,000 \mathrm{ft}(3,700 \mathrm{~m})$
> on platforms, jackups, drillships, and semisubmersibles $>$ in extended reach, deviated, and deep wells
$>$ despite unexpected pressure variations and low pressures in reservoir
$>$ while withstanding corrosion, storms, high seas, and strong currents
\rightarrow Conventional and unconventional onshore environments with products that either provide resistance or mitigate risks associated to:
> excessive drill string buckling
> high side forces
> high drag and low torque
> reduced rate of penetration
$>$ lost circulation
> ineffective hole cleaning
> excessive pipe belly wear
> vibrations and stick-slip
> short tubular life
> difficulty getting weight on bit
\rightarrow Sour Service environments with specially designed drill pipe and BHA grades guaranteeing the necessary resistance to $\mathrm{H}_{2} \mathrm{~S}$.

Whatever the environment, COMMAND SMFI has the solutions to guarantee exceptional performance.

Your One Stop Shop for All Products from the Rig Floor to the BHA

COMMAND SMFI offers the following standard product lines:

Drill Pipe

$2-3 / 8$ " to $6-5 / 8$ " OD, Range 2 and 3

Heavy Weight

2-7/8" to 6-5/8" OD, welded or integral

Drill Collars

2-7/8" to 11" OD, slick or spiral

API and High-Performance Connections

> API connections
> Proprietary connections upon request

Steel Grades

API, Sour Service, high strength and non-mag material grades.

Drill Stem Accessories

Square or hexagonal kellys, RDCV, Kelly Cocks, I-BOP, valve repair kits, valve spare parts, pup joints, crossovers, bit subs, lifting subs, saver subs, pump-in subs, side entry subs, and circulating subs.

COMMAND SMFI is more than a manufacturer of drilling tubulars, supplying a complete range of proprietary drill stem products. We also design and provide tailormade solutions to help clients succeed in increasingly challenging well profiles and drilling programs.

Onshore Drilling

Application

Onshore or land base drilling is defined as drilling with rigs that are moved in by ground transportation and the drilling site is not over water. Many of these wells are now being drilled using a technique called pad drilling where multiple wells are drilled from the same site in very close proximity of each other by shifting the rig slightly. Typically, these are mature fields, pushing the drilling envelope farther to more challenging well formations like new shale fields or very deep wells.

Challenges

Onshore drilling has many different challenges related to industry economics, equipment used, location of the field, well profile and formations.
>Rig day rates make running a rig expensive, which means that the speed of rigging down, moving and rigging up is crucial to guarantee project success. Drilling equipment has to be reliable and easy to handle on the rig floor.
> The physical location of the well site sets limits on the size and type of drilling equipment and sometimes the drill string. Well sites in Arctic areas, for example, have surface equipment and downhole equipment that are exposed to extreme surface temperatures for long periods before use, which can impact their performance.
> Well profiles and formations determine drill string requirements:

- $\mathrm{H}_{2} \mathrm{~S}$ wells require use of special steels to resist Sulfide Stress Cracking.
- ERD or deep wells require the drill pipe in the upper part of the string to have high tensile strength.
- Extended reach wells and ultra-extended reach wells can be difficult to drill because they may be limited by the increased torque and drag of the drill string.
- Small clearance wells will drive Equivalent Circulating Density (ECD) higher, put additional stress on formations and increase circulation pressures.

Products \& Solutions

COMMAND SMFI offers custom drill strings to meet onshore challenges head-on:
> High performance proprietary connections that can be matched with ODs and IDs to provide optimized torque, tensile and hydraulic impact for the particular program.

> Multiple grades and weights

> Drill string products for $\mathrm{H}_{2} \mathrm{~S}$ environments

Sour Service Environments

Application

"Sour Service" refers to a well environment containing Hydrogen Sulfide ($\mathrm{H}_{2} \mathrm{~S}$), which can significantly impact steel drilling tubular performance. It is also well known that $\mathrm{H}_{2} \mathrm{~S}$ is hazardous to human health, living organisms and generally to the environment.

Historically, this is the reason wells found with Sour gas were often carefully plugged and abandoned. With the increasing demand for domestic gas worldwide, some major Sour fields are now being explored and developed.

Challenges

The physical phenomenon associated with Sour Service environments and affecting steel based products under applied or residual stress is known as $\mathrm{H}_{2} \mathrm{~S}$ embrittlement or more specifically as Sulfide Stress Cracking (SSC).
$\mathrm{H}_{2} \mathrm{~S}$ in combination with water and low pH will react with pipe surface, releasing free hydrogen, which can be absorbed through the steel's surface. At this point, hydrogen particles diffuse further into the steel matrix and interact with the steel itself, making it brittle.

The key factors leading to SSC are elevated $\mathrm{H}_{2} \mathrm{~S}$ content, low temperatures, low pH , and the high stress state of the material (tensile stress). When these factors are combined, a crack can initiate in the material and propagate until catastrophic failure, even when stresses are substantially inferior to the yield limit of the material.

Specially designed grades are essential to guarantee the necessary $\mathrm{H}_{2} \mathrm{~S}$ resistance and to ensure the safety of those working in such harsh environments.

Products \& Solutions

COMMAND SMFI's Sour Service proprietary grades are renowned for their performance.Our extensive research, development facilities, and our internationally recognized expertise have combined to produce outstanding critical service material.

Today, COMMAND SMFI is able to guarantee the superior performance of its material in the toughest sour environments around the world. Due to the astringency of the Sour environment, particular attention needs to be paid when selecting and characterizing adapted Sour Service steel grades. Controlling critical manufacturing parameters is also a requirement to ensure superior product performance. Steel microstructure, chemical composition, cleanliness, and heat treatment process controls are essential for high sulfide stress cracking resistance.

Geothermal Drilling

Application

Geothermal energy uses the earth's thermal energy generated and stored in the earth's geology from the core to the surface. Steam, hot water and minerals are some of the most important direct products of geothermal resources. Convenient access to this energy source is concentrated at the margins of the earth's tectonic plates where conventional drilling techniques and equipment can best be exploited. Geothermal drilling is used to access this stored energy through a process of creating boreholes in the earth to extract the earth's heat. Most of today's geothermal drilling projects are located in continental Europe, the Philippines, Indonesia, New Zealand, and the Americas.

Challenges

Geothermal well profiles are characterized as challenging. Hydrogen sulphide, high torsion, high temperatures and punishing wear are a few of the extreme conditions, which may be experienced during geothermal drilling. The extremely hard and abrasive rock formations found in geothermal wells result in torsion levels and equipment wear which may be higher than those found in oil and gas drilling.

Products \& Solutions

COMMAND SMFI offers custom drill strings to meet geothermal challenges head-on:
> high performance connections high torque double shoulder connections offered upon request.
> Hardbanding products are applied to tool joints and upsets/wear pads as a hard and extremely abrasion-resistant sacrificial layer. We offer alloy steel and tungsten carbide hardband products to suit the drilling conditions and specific client requirements from our portfolio of proprietary hardband products and specialist manufacturers.

Sour Service Grades

Operational Challenges

The physical phenomenon associated with Sour Service environments and affecting steel based products under applied or residual stress is known as $\mathrm{H}_{2} \mathrm{~S}$ embrittlement or more specifically as Sulfide Stress Cracking (SSC). $\mathrm{H}_{2} \mathrm{~S}$ in combination with water and low pH will react with pipe surface, releasing free hydrogen, which can be absorbed through the steel's surface. At this point, hydrogen particles diffuse further into the steel matrix and interact with the steel itself, which becomes brittle. The key factors leading to SSC are elevated $\mathrm{H}_{2} \mathrm{~S}$ content, low temperatures, low pH , and the high stress state of material (tensile stress). When these factors are combined, a crack can initiate in the material and propagate causing catastrophic failure, even when stresses are substantially inferior to the yield limit of the material.

Specially designed grades are essential to guaranteeing the necessary $\mathrm{H}_{2} \mathrm{~S}$ resistance within the steel and to ensure the safety of those working in such harsh environments.

The Solution: Specific Drill String Components Providing Higher Performance and Safety Margins

COMMAND SMFI's Sour Service proprietary grades are renowned for their performance. Our extensive research and development facilities, and our internationally recognized expertise combine to produce outstanding critical service material. We are able to guarantee the superior performance of our material in the toughest sour environments around the world.

Due to the astringency of sour environments, particular attention needs to be paid when selecting and characterizing adapted Sour Service steel grades. Controlling critical manufacturing parameters is also a requirement to ensure superior product performance. Steel microstructure, chemical composition, cleanliness, and heat treatment process controls are essential for high sulfide stress cracking resistance. Such proprietary grades largely exceed the resistance of API grades to SSC, and are being manufactured according to several industry standards such as NACE TM0177 and IRP 1.8.

Our Sour Service HWDP is compliant with API specifications and is more resistant to $\mathrm{H}_{2} \mathrm{~S}$ than standard grade HWDP.

	Construction	$\begin{gathered} \text { Ys Min } \\ \text { KSI } \end{gathered}$	$\begin{aligned} & \text { UTI Min } \\ & \text { KSI } \end{aligned}$	Hardness Single Max HRC	Min Single Impact Charpy Test ft-bs@+20C	Material Type	NACE Test
HWDP-65 HW MS	Welded	65	95	22	24	$\mathrm{H}_{2} \mathrm{~S}$ resistant	No
		110	140	36	48	$\mathrm{H}_{2} \mathrm{~S}$ resistant	No
HWDP-110 HW MS	Integral	110	140	36	48	$\mathrm{H}_{2} \mathrm{~S}$ resistant	No

COMMAND SMFI can maximize safety margins in $\mathrm{H}_{2} \mathrm{~S}$ environments with Sour Service drill collars, pup joints and accessories using ASCOWELL C material.

| | Construction | YS Min
 KSI | UTI Min
 KSI | Hardness
 Single Max HRC | Min Single Impact
 Charpy Test ft-los@+20C | Material Type | NACE Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PJ -110 PUP S | Integral | 110 | 140 | 36 | 48 | H_{2} S resistant | No |
| Dill collars and accessories | Integral | 110 | 140 | 36 | 48 | H_{2} S resistant | No |

Drill Pipe

The Solution: Drill Pipe Designed to Go Deep

COMMAND SMFI, through its mother company Command Tubular Products located in Houston (US) is able to supply Drill Dipes designed to provide superior technical performance and a service lifetime exceeding most current industry standards.

Drill Pipe are in conformance with API 5DP, 7-1 \& 7-2 specifications:
> Pipe body OD from 2-3/8" to $6-5 / 8$ "
> Range 2 and 3 lengths
> And a variety of steel grades:
> API: E-75, X-95, G-105, S-135, Sour Service Connections
> API
> Proprietary high torque double shoulder connections (CET, CDS \& others upon request)
Drill pipes are available with:
> Pipe body OD from 2-3/8" to 6-5/8"
> 87.5 or 95% minimum wall
> All tubes/Grades full length ultrasonic inspected (flut)
> All tool joints exceed API requirements
> Connection threading is performed to API Spec 7-2
> Tool joint markings are applied to customer or API RP7G specifications
> Factory 3 cycle make and break
> Internal Plastic Coating (upon request)
> High quality hardbanding solutions upon request
> Full documentation packages provided
> Phosphate-coated threads
> NS-1, DS-1 specifications

COMMAND SMFI also has its own tool joint manufacturing capabilities and our tool joints meet or exceed API specifications and tolerance requirements. Each joint is inspected to guarantee visual and dimensional properties and tested to ensure proper mechanical characteristics.

All our tool joints are:
> 100\% magnetic-particle inspected
> Phosphate-coated (anti-galling treatment)
> Hardness-tested

Operational Benefits

Drill Pipe Internal and External Upset Profile

One of the most critical sections in welded drill pipe is the transition zone between the tool joint and the pipe body. A smooth, gradual transition linked to the superior nature of the purity of our steel ensures minimum stress concentration and greatly improves the fatigue life of the pipe.

Heavy Weight Drill Pipe

The Solution: Transitional and Compressive Load Member

COMMAND SMFI's Heavy Weight Drill Pipe (HWDP) features a tool joint pin and box and a thick-walled tube with a raised central section for wellbore protection of the tube. The central section comes in various designs; slick, spiral, full spiral, or tri-spiral. HWDP can be manufactured as a welded assembly or machined integral from bars.

HWDP in the bottom-hole assembly (BHA) provide a gradual transition between drill pipe and drill collars. Its main function is to transfer surface weight-on-bit (WOB) and pipe rotation to the drilling assembly. It also mitigates drill string fatigue and provides directional control of the BHA. In addition, Heavy Weight Drill Pipe can be used to push or force liners/screens down hole during drilling operations.

Applications

Vertical Drilling

> Weight-on-bit and compressive load member
> Transitional and fatigue resistant member
> Replacement of drill collars

Directional, Horizontal, and Extended Reach Drilling

$>$ Weight-on-bit and compressive load member
> Differential sticking and drill string lock-up prevention
> Directional control of BHA

Remedial Operations

> Provide the weight required for milling, under-reaming, and hole-opening operations

COMMAND SMFI's HWDP conforms to API Spec 7-1 (ISO 10424-1) and API Spec 7-2 (ISO 10424-2).

Heavy Weight Spiral Drill Pipe (HWSP)

COMMAND SMFI 's Heavy Weight Spiral Drill Pipe (HWSP) is designed to address differential sticking in vertical and directional drilling environments. Different central upset designs and spiraling configurations are available (spiral, full spiral and tri-spiral) to reduce buckling, risks of differential sticking, improve hole cleaning, and BHA stiffness.

Materials

COMMAND SMFI provides HWDP in standard, Sour Service, or non-magnetic grades.
Standard heavy weight drill pipe (HWDP) is supplied with AISI 1340 steel or equivalent in the pipe body and AISI 4145 H or AISI 4140 H -modified tool joints. The welded assembly is the standard offer whereas the integral version is considered optional due to plant availability.

ASCOWELL C steel bar grade has been developed to provide resistance to Sulfide Stress Cracking (SSC) for BHA products improving impact strength and fracture toughness. The resistance to sulfide stress cracking significantly surpasses the resistance of AISI 4145 H -modified/4140H-modified steel as shown in NACE test TM0177. The ASCOWELL C HWDP provides superior performance in Sour Service applications and continues to be used around the world.

Integral non-magnetic HWDP made of Amagnit $^{\text {TM }} 501$ is also offered for directional drilling applications.

Application	Material	Size	Yield Strength	Ultimate Strength	Hardness (Brinell)	Elongation	Reduction of Area	Min Charpy
			Min (KS)	Win (KSS)	(HiB)	(A\%)	(\%)	(it-libs ©+20 ${ }^{\circ} \mathrm{C}$)
Standard Integral \& NS-1	AISI 4145H-modified	All	110	140	285 to 340	13	45	40
Standard welded (central part)	AISI 1340-modified	All	65	95	235 (max)	18	N/A	30
NS-1 welded (central part)	AISI 4140H-modified	All	120	140	285 to 340	13	45	40
Standard welded \& NS-1 (tool joint)	AISI 4140H-modified	Up to $71 / 4$ "	120	140	285 to 340	13	45	40
	ASCOWELL C	Above $71 / 4$ "	100	135				0
HWDP-110 HW MS		Up to $63 / 4$ "	110	140	285 to 340	13	45	55
		Above $63 / 4$ " (up to $81 / 4$)	100	135				
HWDP-65 HW MS (tool joint)	ASCOWELL C	Up to $63 / 4$ "	110	140	285 to 340	13	45	55
		Above $63 / 4$ " (up to $81 / 4$)	100	135				
HWDP-65 HW MS (central part)	AISI 1340-modified	All	65	95	235 (max)	18	N/A	30

Operational Benefits

COMMAND SMFI has been producing high quality Heavy Weight Drill Pipe for over 60 years and is one of the few global suppliers that can offer both HWDP products manufactured from solid bars or assembled from tubes. Our quality standards, manufacturing processes, internal sourcing of green tubes and tool joints, premium connections and product traceability guarantee product performance and reliability.

Heavy Weight Drill Pipe Manufacturing Flow Chart

Central Body

Tool Joint

Heavy weight drill pipe is manufactured to customer requirements and, where applicable, to specifications such as API, ISO, NS1, DS1, etc.

Heavy Weight Drill Pipe Data

Pipe Body							Tool Joint			
Tube OD	Construction	Tube ID	Central Upset \varnothing	Tube Yield	Torsional Strength	Tensile Strength	Connection	$\begin{aligned} & \text { TJ } \\ & \text { OD } \end{aligned}$	$\begin{aligned} & \text { TJ } \\ & \text { ID } \end{aligned}$	TJ Yield
in		in	in	ksi	ft -\|bs	Ibs		in	in	ksi
2-7/8	Integral	1-1/2	3-3/8	110	22,900	520,000	$27 / 8$ PAC	3-1/8	1-1/2	110
2-7/8	Integral	1-1/2	3-3/8	110	22,900	520,000	NC26	3-5/8	1-1/2	110
2-7/8	Integral	2-1/16	3-3/8	110	18,100	347,000	NC31	4-1/8	2-1/16	110
2-7/8	Integral	2-1/8	3-3/8	110	17,300	324,000	$27 / 80 \mathrm{H}$	3-7/8	2-1/8	110
$27 / 8$	Integral	2-1/8	3-3/8	110	17,300	324,000	$27 / 8$ SLH-90	4	2-1/8	110
2-7/8	Integral	2-1/8	3-3/8	110	17,300	324,000	$27 / 8$ SLH-90	4-1/8	2-1/8	110
2-7/8	Integral	2-1/8	3-3/8	110	17,300	324,000	NC31	4-1/8	2-1/8	110
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC31	4-1/8	2-1/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-11/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-1/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-1/8	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-3/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-1/4	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-5/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-3/8	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-7/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	4-3/4	2-9/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	5	2-7/16	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	5	2-1/4	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	5	2-1/8	120
3-1/2	Welded	2-1/16	4	55	19,600	345,000	NC38	5	2-1/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC31	4-1/8	2-1/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-11/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-1/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-1/8	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-3/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-1/4	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-5/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-3/8	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-7/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	4-3/4	2-9/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	5	2-7/16	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	5	2-1/4	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	5	2-1/8	120
3-1/2	Welded	2-1/4	4	55	18,500	310,000	NC38	5	2-1/16	120

Tool Joint					Slick			Spiraled		
Recommended Make-Up	Torsional Strength	Tensile Strength	Box Length	Pin Length	Central Upset	Total Weight	Weight per foot	Unspiraled Upset	Total Weight	Weight per foot
ft -lbs	ft -lbs	Ibs	in	in	in	Ibs	$\mathrm{lbs} / \mathrm{ft}$	in	Ibs	lbs/ft
4,150	5,220	250,000	21	27	24	532	17.26	25	634	20.60
4,670	8,220	358,000	21	27	24	565	18.38	25	668	21.72
6,500	11,400	432,000	21	27	24	440	14.33	25	543	17.68
4,690	8,260	328,000	21	27	24	399	12.98	25	502	16.32
6,050	10,600	362,000	21	27	24	409	13.31	25	512	16.65
6,050	10,600	362,000	21	27	24	420	13.66	25	523	17.00
6,140	10,800	410,000	21	27	24	419	13.63	25	521	16.98
7,490	12,500	472,000	21	27	24	729	23.75	25	859	27.98
10,800	18,100	587,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	867,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	842,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	817,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	791,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	764,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	736,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	708,000	21	27	24	785	25.60	25	915	29.83
11,500	19,200	649,000	21	27	24	785	25.60	25	915	29.83
13,200	22,000	708,000	21	27	24	811	26.44	25	941	30.67
14,900	24,800	791,000	21	27	24	811	26.44	25	941	30.67
15,900	26,500	842,000	21	27	24	811	26.44	25	941	30.67
16,100	26,800	867,000	21	27	24	811	26.44	25	941	30.67
7,490	12,500	472,000	21	27	24	663	21.60	25	793	25.82
10,800	18,100	587,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	867,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	842,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	817,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	791,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	764,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	736,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	708,000	21	27	24	719	23.44	25	849	27.67
11,500	19,200	649,000	21	27	24	719	23.44	25	849	27.67
13,200	22,000	708,000	21	27	24	745	24.28	25	874	28.51
14,900	24,800	791,000	21	27	24	745	24.28	25	874	28.51
15,900	26,500	842,000	21	27	24	745	24.28	25	874	28.51
16,100	26,800	867,000	21	27	24	745	24.28	25	874	28.51

Heavy Weight Drill Pipe Data

Pipe Body							Tool Joint			
Tube OD	Construction	Tube ID	Central Upset Ø	Tube Yield	Torsional Strength	Tensile Strength	Connection	$\begin{aligned} & \text { TJ } \\ & \text { OD } \end{aligned}$	TJ	TJ Yield
in		in	in	ksi	ft-lbs	Ibs		in	in	ksi
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC38	4-3/4	2-9/16	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC38	4-7/8	2-9/16	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC38	5	2-9/16	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC38	4-7/8	2-7/16	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC38	5	2-7/16	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC38	5	2-1/4	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC40	5-1/2	2-7/16	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC46	6	3-1/4	120
4	Welded	2-1/2	4-1/2	55	28,200	421,000	NC46	6	3	120
4	Welded	2-9/16	4-1/2	55	27,600	408,000	NC38	4-3/4	2-9/16	120
4	Welded	2-9/16	4-1/2	55	27,600	408,000	NC38	4-7/8	2-9/16	120
4	Welded	2-9/16	4-1/2	55	27,600	408,000	NC38	5	2-9/16	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC40	5-1/2	2-13/16	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	3-1/4	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC50	6-5/8	3-3/4	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	3	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	2-7/8	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	2-13/16	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	2-3/4	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC50	6-5/8	3-1/2	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	2-1/2	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC46	6-1/4	2-1/4	120
4-1/2	Welded	2-1/2	5	55	42,800	605,000	NC50	6-5/8	3	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC40	5-1/2	2-13/16	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC50	6-5/8	3-3/4	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC46	6-1/4	3	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC46	6-1/4	2-13/16	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC46	6-1/4	2-3/4	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC50	6-5/8	3-1/2	120
4-1/2	Welded	2-13/16	5	55	40,100	533,000	NC50	6-5/8	3	120
5	Welded	3	5-1/2	55	56,500	691,000	NC50	6-5/8	3	120
5	Welded	3	5-1/2	55	56,500	691,000	$51 / 2 \mathrm{FH}$	7	3-3/4	120
5	Welded	3	5-1/2	55	56,500	691,000	NC50	6-5/8	2-3/4	120
5	Welded	3	5-1/2	55	56,500	691,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/2	120

	Tool Joint					Slick			Spiraled		
	Recommended Make-Up Torque ft -Ibs	Torsional Strength	Tensile Strength	Box Length	Pin Length	Central Upset Length in	Total Weight	Weight per foot	Unspiraled Upset Length in	Total Weight	Weight per foot
		ft -lbs	Ibs	in	in		Ibs	lbs/ft		Ibs	lbs/ft
4	11,500	19,200	649,000	21	27	24	893	29.13	25	1,045	34.07
4	12,100	20,100	649,000	21	27	24	906	29.53	25	1,057	34.47
4	12,100	20,100	649,000	21	27	24	918	29.94	25	1,070	34.88
4	13,200	22,000	708,000	21	27	24	906	29.53	25	1,057	34.47
4	13,200	22,000	708,000	21	27	24	918	29.94	25	1,070	34.88
4	14,900	24,800	791,000	21	27	24	918	29.94	25	1,070	34.88
4	17,900	29,800	897,000	21	27	24	971	31.69	25	1,122	36.64
4	19,900	33,200	901,000	21	27	24	1,032	33.69	25	1,183	38.64
4	23,400	39,000	1,050,000	21	27	24	1,032	33.69	25	1,183	38.64
4	11,500	19,200	649,000	21	27	24	867	28.28	25	1,019	33.22
4	12,100	20,100	649,000	21	27	24	880	28.68	25	1,031	33.62
4	12,100	20,100	649,000	21	27	24	892	29.10	25	1,044	34.04
4-1/2	14,000	23,300	712,000	21	27	24	1,277	41.70	25	1,451	47.37
4-1/2	19,900	33,200	901,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	22,400	37,300	939,000	21	27	24	1,421	46.40	25	1,595	52.07
4-1/2	23,400	39,000	1,050,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	25,000	41,700	1,120,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	25,800	43,100	1,150,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	26,600	44,400	1,180,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	26,700	44,500	1,110,000	21	27	24	1,421	46.40	25	1,595	52.07
4-1/2	29,600	49,300	1,310,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	32,300	53,800	1,420,000	21	27	24	1,369	44.71	25	1,543	50.38
4-1/2	34,500	57,500	1,420,000	21	27	24	1,421	46.40	25	1,595	52.07
4-1/2	14,000	23,300	712,000	21	27	24	1,141	37.27	25	1,315	42.94
4-1/2	22,400	37,300	939,000	21	27	24	1,285	41.97	25	1,459	47.64
4-1/2	23,400	39,000	1,050,000	21	27	24	1,233	40.28	25	1,407	45.94
4-1/2	25,800	43,100	1,150,000	21	27	24	1,233	40.28	25	1,407	45.94
4-1/2	26,600	44,400	1,180,000	21	27	24	1,233	40.28	25	1,407	45.94
4-1/2	26,700	44,500	1,110,000	21	27	24	1,285	41.97	25	1,459	47.64
4-1/2	34,500	57,500	1,420,000	21	27	24	1,285	41.97	25	1,459	47.64
5	34,500	57,500	1,420,000	21	27	24	1,536	50.17	25	1,732	56.56
5	37,700	62,900	1,450,000	21	27	24	1,587	51.88	25	1,782	58.28
5	38,000	63,400	1,550,000	21	27	24	1,536	50.17	25	1,732	56.56
5	43,300	72,200	1,620,000	21	27	24	1,625	53.13	25	1,821	59.53

Heavy Weight Drill Pipe Data

Pipe Body							Tool Joint			
Tube OD	Construction	Tube ID	Central Upset \varnothing	Tube Yield	Torsional Strength	Tensile Strength	Connection	$\begin{aligned} & \text { TJ } \\ & \text { OD } \end{aligned}$	$\begin{aligned} & \text { TJ } \\ & \text { ID } \end{aligned}$	TJ Yield
in		in	in	ksi	ft-Ibs	lbs		in	in	ksi
5-1/2	Welded	3-5/8	6	55	70,100	739,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/2	120
5-1/2	Welded	3-5/8	6	55	70,100	739,000	$51 / 2 \mathrm{FH}$	7-1/2	3	120
5-1/2	Welded	3-7/8	6	55	65,100	658,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/2	120
5-1/2	Welded	3-7/8	6	55	65,100	658,000	$51 / 2 \mathrm{FH}$	7-1/2	3	120
6-5/8	Welded	5	7	55	102,000	816,000	$65 / 8 \mathrm{FH}$	8-1/4	4-3/4	120
6-5/8	Welded	5	7	55	102,000	816,000	$65 / 8 \mathrm{FH}$	8-1/2	4-1/4	120

5-1/2" - 6-5/8"

Tool Joint					Slick			Spiraled		
Recommended Make-Up	Torsional Strength	Tensile Strength	$\begin{aligned} & \text { Box } \\ & \text { Length } \end{aligned}$	$\begin{gathered} \text { Pin } \\ \text { Length } \end{gathered}$	Central Upset Length	Total Weight	Weight per foot	Unspiraled Upset Length in	Total Weight	Weight per foot
ft-Ibs	ft -Ibs	Ibs	in	in		Ibs	$\mathrm{lbs} / \mathrm{ft}$		Ibs	lbs/ft
43,300	72,200	1,620,000	21	27	24	1,662	54.34	25	1,880	61.47
52,100	86,800	1,930,000	21	27	24	1,701	55.62	25	1,919	62.75
43,300	72,200	1,620,000	21	27	24	1,509	49.33	25	1,727	56.47
52,100	86,800	1,930,000	21	27	24	1,548	50.61	25	1,766	57.75
51,300	85,500	1,680,000	21	27	24	1,822	59.58	25	2,031	66.40
65,000	108,000	2,100,000	21	27	24	1,866	61.03	25	2,075	67.85

Heavy Weight Drill Pipe Data Sour Service

Pipe Body							Tool Joint			
Tube OD	Construction	Tube ID	Central Upset \varnothing	Tube Yield	Torsional Strength	Tensile Strength	Connection	$\begin{aligned} & \text { TJ } \\ & \text { OD } \end{aligned}$	$\begin{aligned} & \text { TJ } \\ & \text { ID } \end{aligned}$	TJ Yield
in		in	in	ksi	ft-Ibs	Ibs		in	in	ksi
3-1/2	HWDP-110 HW MS	2-3/16	4	110	37,700	645,000	NC38	4-3/4	2-3/16	110
3-1/2	HWDP-110 HW MS	2-1/16	4	110	39,200	691,000	NC38	4-3/4	2-1/16	110
3-1/2	HWDP-110 HW MS	2-1/16	4	110	39,200	691,000	NC38	5	2-1/16	110
4-1/2	HWDP-110 HW MS	2-13/16	5	110	80,200	1,070,000	NC46	6-1/4	2-13/16	110
5	HWDP-110 HW MS	3	5-1/2	110	113,000	1,380,000	NC50	6-1/2	3	110
5	HWDP-110 HW MS	3	5-1/2	110	113,000	1,380,000	NC50	6-5/8	3	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-3/4	2-1/16	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-3/4	2-1/8	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-3/4	2-3/16	110
3-1/2	HWDP-65 HW MS	2-3/16	4	65	22,300	381,000	NC38	4-3/4	2-3/16	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	4-3/4	2-3/16	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-3/4	2-1/4	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	4-3/4	2-1/4	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-3/4	2-5/16	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-3/4	2-3/8	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	4-3/4	2-3/8	110
3-1/2	HWDP-65 HW MS	2-3/8	4	65	20,700	337,000	NC38	4-3/4	2-3/8	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	4-7/8	2-1/16	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	4-7/8	2-1/4	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	4-7/8	2-5/16	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	5	2-1/16	110
3-1/2	HWDP-65 HW MS	2-3/16	4	65	22,300	381,000	NC38	5	2-3/16	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	5	2-3/16	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	5	2-1/4	110
3-1/2	HWDP-65 HW MS	2-1/4	4	65	21,800	367,000	NC38	5	2-1/4	110
3-1/2	HWDP-65 HW MS	2-1/16	4	65	23,100	408,000	NC38	5	2-7/16	110
4	HWDP-65 HW MS	2-1/2	4-1/2	65	33,300	498,000	NC38	5	2-9/16	110
4	HWDP-65 HW MS	2-1/2	4-1/2	65	33,300	498,000	NC40	5-1/4	2-1/2	110
4-1/2	HWDP-65 HW MS	2-13/16	5	65	47,400	630,000	NC46	6-1/4	2-13/16	110
4-1/2	HWDP-65 HW MS	2-3/4	5	65	48,100	648,000	NC46	6-1/4	2-7/8	110
4-1/2	HWDP-65 HW MS	2-13/16	5	65	47,400	630,000	NC46	6-1/2	2-13/16	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-1/2	3	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-1/2	3-1/16	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-1/2	3-1/8	110
5	HWDP-65 HW MS	3-1/8	5-1/2	65	65,000	778,000	NC50	6-1/2	3-1/8	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-1/2	3-1/8	110
5	HWDP-65 HW MS	2-3/4	5-1/2	65	69,700	890,000	NC50	6-5/8	2-3/4	110
5	HWDP-65 HW MS	2-13/16	5-1/2	65	69,000	872,000	NC50	6-5/8	2-13/16	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-5/8	3	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-5/8	3-1/16	110
5	HWDP-65 HW MS	3-1/16	5-1/2	65	65,900	797,000	NC50	6-5/8	3-1/16	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-5/8	3-1/8	110
5	HWDP-65 HW MS	3	5-1/2	65	66,800	817,000	NC50	6-5/8	3-1/4	110

Tool Joint					Slick			Spiraled		
Recommended Make-Up	Torsional Strength	Tensile Strength	Box Length	$\begin{aligned} & \text { Pin } \\ & \text { Length } \end{aligned}$	Central Upset	Total Weight	Weight per foot	Unspiraled Upset	Total Weight	Weight per foot
ft-lbs	ft -lbs	Ibs	in	in	in	Ibs	Ibs/ft	in	Ibs	lbs/ft
9,990	17,600	749,000	21	27	25	742	24.19	25	871	28.41
9,990	17,600	795,000	21	27	25	785	25.60	25	915	29.83
13,900	24,600	795,000	21	27	25	811	26.44	25	941	30.67
22,400	39,500	1,050,000	21	27	25	1,233	40.28	25	1,407	45.94
29,700	52,200	1,300,000	21	27	25	1,519	49.60	25	1,715	56.00
30,000	52,700	1,300,000	21	27	25	1,536	50.17	25	1,732	56.56
9,990	17,600	795,000	21	27	25	785	25.60	25	915	29.83
9,990	17,600	772,000	21	27	25	785	25.60	25	915	29.83
9,990	17,600	749,000	21	27	25	785	25.60	25	915	29.83
9,990	17,600	749,000	21	27	25	742	24.19	25	871	28.41
9,990	17,600	749,000	21	27	25	719	23.44	25	849	27.67
9,990	17,600	725,000	21	27	25	785	25.60	25	915	29.83
9,990	17,600	725,000	21	27	25	719	23.44	25	849	27.67
9,990	17,600	700,000	21	27	25	785	25.60	25	915	29.83
9,990	17,600	675,000	21	27	25	785	25.60	25	915	29.83
9,990	17,600	675,000	21	27	25	719	23.44	25	849	27.67
9,990	17,600	675,000	21	27	25	672	21.90	25	801	26.13
11,900	21,000	795,000	21	27	25	798	26.02	25	927	30.24
11,900	21,000	725,000	21	27	25	732	23.86	25	861	28.08
11,900	21,000	700,000	21	27	25	732	23.86	25	861	28.08
13,900	24,600	795,000	21	27	25	811	26.44	25	941	30.67
13,400	23,500	749,000	21	27	25	767	25.02	25	897	29.25
13,400	23,500	749,000	21	27	25	745	24.28	25	874	28.51
12,900	22,700	725,000	21	27	25	811	26.44	25	941	30.67
12,900	22,700	725,000	21	27	25	745	24.28	25	874	28.51
11,500	20,200	649,000	21	27	25	811	26.44	25	941	30.67
10,500	18,400	595,000	21	27	25	918	29.94	25	1,070	34.88
15,000	26,300	796,000	21	27	25	943	30.78	25	1,094	35.73
22,400	39,500	1,050,000	21	27	25	1,233	40.28	25	1,407	45.94
21,700	38,300	1,020,000	21	27	25	1,262	41.20	25	1,435	46.87
22,400	39,500	1,050,000	21	27	25	1,268	41.39	25	1,441	47.06
29,700	52,200	1,300,000	21	27	25	1,519	49.60	25	1,715	56.00
29,200	51,300	1,270,000	21	27	25	1,519	49.60	25	1,715	56.00
28,300	49,900	1,230,000	21	27	25	1,519	49.60	25	1,715	56.00
28,300	49,900	1,230,000	21	27	25	1,456	47.56	25	1,652	53.95
28,300	49,900	1,230,000	21	27	25	1,519	49.60	25	1,715	56.00
33,000	58,100	1,420,000	21	27	25	1,654	54.00	25	1,850	60.40
32,300	56,800	1,390,000	21	27	25	1,625	53.08	25	1,821	59.47
30,000	52,700	1,300,000	21	27	25	1,536	50.17	25	1,732	56.56
29,200	51,300	1,270,000	21	27	25	1,536	50.17	25	1,732	56.56
29,200	51,300	1,270,000	21	27	25	1,505	49.15	25	1,701	55.55
28,300	49,900	1,230,000	21	27	25	1,536	50.17	25	1,732	56.56
26,700	46,900	1,160,000	21	27	25	1,536	50.17	25	1,732	56.56

Heavy Weight Drill Pipe Data Sour Service

Pipe Body							Tool Joint			
Tube OD	Construction	Tube ID	Central Upset \varnothing	Tube Yield	Torsional Strength	Tensile Strength	Connection	$\begin{aligned} & \text { TJ } \\ & \text { OD } \end{aligned}$	$\begin{aligned} & \text { TJ } \\ & \text { ID } \end{aligned}$	TJ Yield
in		in	in	ksi	ft-lbs	Ibs		in	in	ksi
5-1/2	HWDP-65 HW MS	3-1/8	6	65	91,500	1,050,000	NC50	6-7/8	3-1/4	110
5-1/2	HWDP-65 HW MS	3-1/2	6	65	85,400	919,000	$51 / 2 \mathrm{FH}$	7	3-1/2	110
5-1/2	HWDP-65 HW MS	3-5/8	6	65	82,800	873,000	$51 / 2 \mathrm{FH}$	7	3-5/8	110
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7	3-5/8	110
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7	3-7/8	110
5-1/2	HWDP-65 HW MS	3-1/4	6	65	89,700	1,010,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/4	100
5-1/2	HWDP-65 HW MS	3-1/4	6	65	89,700	1,010,000	$51 / 2 \mathrm{FH}$	7-1/4	3-5/16	100
5-1/2	HWDP-65 HW MS	3-1/4	6	65	89,700	1,010,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/2	100
5-1/2	HWDP-65 HW MS	3-1/2	6	65	85,400	919,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/2	100
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7-1/4	3-1/2	100
5-1/2	HWDP-65 HW MS	3-5/8	6	65	82,800	873,000	$51 / 2 \mathrm{FH}$	7-1/4	3-5/8	100
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7-1/4	3-7/8	100
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7-1/4	3-7/8	100
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7-1/2	3-1/4	100
5-1/2	HWDP-65 HW MS	3-1/2	6	65	85,400	919,000	$51 / 2 \mathrm{FH}$	7-1/2	3-1/2	100
5-1/2	HWDP-65 HW MS	3-7/8	6	65	76,900	778,000	$51 / 2 \mathrm{FH}$	7-1/2	3-7/8	100
6-5/8	HWDP-65 HW MS	4	7-1/8	65	155,000	1,420,000	$65 / 8 \mathrm{FH}$	8	4	100
6-5/8	HWDP-65 HW MS	4	7-1/8	65	155,000	1,420,000	6 5/8 REG	8	4	100
6-5/8	HWDP-65 HW MS	4-1/2	7-1/8	65	140,000	1,210,000	$65 / 8 \mathrm{FH}$	8	4-1/2	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8	4-3/4	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8	5	100
6-5/8	HWDP-65 HW MS	4-1/2	7-1/8	65	140,000	1,210,000	$65 / 8 \mathrm{FH}$	8-1/4	3-1/2	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8-1/4	4-1/2	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8-1/4	5	100
6-5/8	HWDP-65 HW MS	4	7-1/8	65	155,000	1,420,000	$65 / 8 \mathrm{FH}$	8-1/2	4	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8-1/2	4	100
6-5/8	HWDP-65 HW MS	4-1/4	7-1/8	65	148,000	1,320,000	$65 / 8 \mathrm{FH}$	8-1/2	4-1/4	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8-1/2	4-1/4	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8-1/2	4-1/2	100
6-5/8	HWDP-65 HW MS	5	7-1/8	65	121,000	964,000	$65 / 8 \mathrm{FH}$	8-1/2	5	100

Tool Joint					Slick			Spiraled		
Recommended Make-Up	Torsional Strength	Tensile Strength	Box Length	Pin Length	Central Upset	Tota Weight	Weight per foot	Unspiraled Upset	Total Weight	Weight per foot
ft-Ibs	ft -Ibs	Ibs	in	in	in	Ibs	lbs/ft	in	Ibs	lbs/ft
26,700	46,900	1,160,000	21	27	25	1,886	61.59	25	2,104	68.72
32,800	57,700	1,480,000	21	27	25	1,697	55.49	25	1,915	62.63
32,800	57,700	1,410,000	21	27	25	1,624	53.11	25	1,843	60.25
32,800	57,700	1,410,000	21	27	25	1,471	48.11	25	1,690	55.25
31,200	55,000	1,250,000	21	27	25	1,471	48.11	25	1,690	55.25
41,000	65,600	1,480,000	21	27	25	1,872	61.22	25	2,091	68.36
40,600	64,900	1,450,000	21	27	25	1,872	61.22	25	2,091	68.36
37,600	60,200	1,350,000	21	27	25	1,872	61.22	25	2,091	68.36
37,600	60,200	1,350,000	21	27	25	1,735	56.71	25	1,953	63.85
37,600	60,200	1,350,000	21	27	25	1,509	49.33	25	1,727	56.47
35,600	56,900	1,280,000	21	27	25	1,662	54.34	25	1,880	61.47
31,200	50,000	1,130,000	21	27	25	1,509	49.33	25	1,727	56.47
31,200	50,000	1,130,000	21	27	25	1,509	49.33	25	1,727	56.47
41,500	66,500	1,480,000	21	27	25	1,548	50.61	25	1,766	57.75
37,600	60,200	1,350,000	21	27	25	1,774	58.00	25	1,992	65.13
31,200	50,000	1,130,000	21	27	25	1,548	50.61	25	1,766	57.75
45,800	73,200	1,910,000	21	27	25	2,525	82.58	25	2,795	91.38
34,000	54,400	1,200,000	21	27	25	2,525	82.58	25	2,795	91.38
45,800	73,200	1,580,000	21	27	25	2,178	71.23	25	2,448	80.03
44,500	71,200	1,400,000	21	27	25	1,791	58.55	25	2,060	67.35
38,100	61,000	1,210,000	21	27	25	1,791	58.55	25	2,060	67.35
56,500	90,400	2,210,000	21	27	25	2,221	72.61	25	2,490	81.42
50,600	81,000	1,580,000	21	27	25	1,833	59.93	25	2,102	68.74
38,100	61,000	1,210,000	21	27	25	1,833	59.93	25	2,102	68.74
62,000	99,100	1,910,000	21	27	25	2,612	85.41	25	2,881	94.21
62,000	99,100	1,910,000	21	27	25	1,877	61.38	25	2,146	70.18
56,400	90,300	1,750,000	21	27	25	2,444	79.90	25	2,713	88.71
56,400	90,300	1,750,000	21	27	25	1,877	61.38	25	2,146	70.18
50,600	81,000	1,580,000	21	27	25	1,877	61.38	25	2,146	70.18
38,100	61,000	1,210,000	21	27	25	1,877	61.38	25	2,146	70.18

Heavy Weight Drill Pipe Performance Datasheet

Overview

The Heavy Weight Drill Pipe Performance Datasheet is an easy-to-use document summarizing the performances and other technical characteristics of HWDPs manufactured by COMMAND SMFI. This document provides key performance characteristics such as tensile strength, torsional strength and make-up torque range, as well as other product-specific performance data.

An overview of some additional information available in the HWDP Performance Datasheet is shown below. Useful datasheet definitions:
> Torsional Ratio: The ratio of the connection torsional strength divided by the pipe body torsional strength. API recommends a ratio of 0.80 or larger.
> Balance OD: The tool joint OD where the yield of the box is equal to the yield of the pin for a given tool joint ID.
> Bending Strength Ratio (BSR): This bending criteria is defined in the API spec RP7G as an inertia ratio between pin and box connection. A rotary shouldered connection that has a BSR of 2.5 (or 2.5:1) is generally accepted as an average balanced connection.
> Combined Load Chart: Chart used to determine the operation zone for tool joint in tension and torque.
> Wear Chart: Chart used to determine the recommended make-up torque for worn products.

Drill Collars

The Solution: Transitional and Compressive Load Member

COMMAND SMFI drill collars are thick-walled tubulars machined from solid steel bars and manufactured to specifications to meet and/or exceed API or NS-1 requirements. The quality of the heat treatment is critical in the production of raw materials and must be uniform and deep enough through the thickness of the bar to ensure the mechanical properties.

Drill collars are used as a component of the bottom-hole assembly (BHA) and provide the following:
$>$ Drilling weight-on-bit (WOB)
$>$ BHA directional control
$>$ Hole size integrity
> Stiffness to maintain hole straightness
$>$ Clearance for the drill string
$>$ Compressive and torsional loads
> Mitigate differential sticking and stuck pipe thanks to spiraled grooves

Product Performance

Drill collars come in slick and spiral-grooved designs with additional features for safe surface-handling and trouble-free operations. We provide the full range of collars manufactured in AISI 4145H-modified steel with mechanical properties guaranteed 1 inch below steel surface at ambient temperature.

Product range and features

Standard

$>$ ODs from 2-7/8" to 11"
> API Specification 7.1 \& 7.2
$>$ Slick
> API connections
> Enhanced fatigue resistance with thread cold rolling
> Phosphate or zinc coated threads
> Slip and elevator recess
> API stress-relief on pin and box bore back
> Pressed steel thread protectors

Options

> Spiral
>Hardbanding
> Internal plastic coating with ODs <6 1/2"
> High-performance double shoulder connections upon request
>Customized elevator and slip recess
$>$ NS-1 or DS-1 or customers specifications
> Premium grades and materials: Sour Service and non-magnetic alloys
$>$ Range 2 and 3

Spiral Design

In order to reduce differential pressure sticking and wellbore contact, the surface of Drill Collars can be spiral-grooved. Spiral Drill Collars are the perfect solution for deep, directional or deviated drilling. Cross sections of the drill collars reduce the contact area with the wall of the hole.

Slip \& Elevator Recess
Slip and elevator recesses improve handling efficiency and safety. These features are machined in accordance with API standard RP7G. The upper radius of the elevator recess is cold rolled to increase the product service life. Slip and elevator recesses can be manufactured together or separately.

Drill Collar Material Table

Connection	API	NS1		DS1 common / DS1 critioal
API	All	$\mathbf{O D}<\mathbf{9 1 / 2 "}$	$\mathbf{O D}>=\mathbf{9 1 / 2 "}$	All
	4145 H "-modified	4145 H -modified	4145 H -modified	4145 H -modified
	110 KSI	110 KSI	100 KSI	110 KSI

Connection	Sour Service			
API	$\begin{gathered} <=\mathbf{6 3 / 4 " O D} \\ \text { (with NACE test 45\% SMYS) } \end{gathered}$	> 63/4"OD (with NACE test 45\% SMYS) 45\% SMYS guaranteed)	$\begin{gathered} <=\mathbf{6 3 / 4 " O D} \\ \text { (No NACE test } \\ 45 \% \text { SMYS guaranteed) } \end{gathered}$	$>63 / 4 \text { " OD }$ (No NACE test
	$\begin{gathered} \text { ASCOWELL C } \\ 110 \mathrm{KSI} \end{gathered}$	ASCOWELL C 100 KSI	$\begin{gathered} \text { ASCOWELL C } \\ 110 \mathrm{KSI} \end{gathered}$	$\begin{gathered} \text { ASCOWELL C } \\ 100 \mathrm{KSI} \end{gathered}$

Operational Benefits

COMMAND SMFI has been producing high quality drill collars for over 60 years and we were the first company to manufacture small diameter drill collars from solid bars. Bars are trepanned in-house using specialty equipment to guarantee product performance and reliability. Our experience in material specification, mechanical properties, heat treatment, machining connections, and inspection are reflected in our product performance.

Drill Collar Manufacturing Flow Chart

Drill collars are manufactured to customer requirements and, where applicable, to specifications such as API, ISO, NS1, DS1, etc.

Drill Collar Data

		Pipe Body			
OD	ID	Connection	Bevel Diameter	Overall Length	Recommended Make-Up Torque*
(in)	(in)		(in)	(ft)	(ft-\|bs)
2-7/8	1-1/2	$23 / 8$ PAC	2-45/64	31	2,070
3-1/8	1	$23 / 8$ REG	3-1/64	31	3,030
3-1/8	1-1/8	$23 / 8$ REG	3-1/64	31	3,030
3-1/8	1-1/4	NC23	3	31	3,330
3-1/8	1-1/4	$23 / 8$ REG	3-1/64	31	3,030
3-1/8	1-1/4	NC26	3	31	1,690
3-3/8	1-1/2	NC26	3-21/64	31	3,580
3-1/2	1-1/2	NC26	3-21/64	31	4,610
3-3/4	1-1/2	NC26	3-29/64	31	4,670
4-1/8	2	NC31	3-61/64	31	6,850
4-1/4	1-3/4	NC31	3-61/64	31	8,160
4-1/4	2	NC31	3-61/64	31	6,850
4-3/4	1-3/4	NC38	4-41/64	31	9,990
4-3/4	2	NC35	4-33/64	31	10,800
4-3/4	2	NC38	4-41/64	31	9,990
4-3/4	2-1/4	NC38	4-41/64	31	9,990
4-3/4	2-1/4	NC35	4-33/64	31	9,200
4-3/4	2-1/2	NC38	4-41/64	31	9,990
4-7/8	2-1/4	NC38	4-41/64	31	11,900
5	2-1/4	NC38	4-49/64	31	12,900
5-1/4	2-1/4	NC38	4-61/64	31	12,900
5-3/4	2-1/4	NC46	5-5/8	31	17,700
5-3/4	2-1/4	NC40	5-25/64	31	17,000
6	2-1/4	NC46	5-23/32	31	23,400
6	2-13/16	NC46	5-23/32	31	22,400
6-1/4	2-1/4	$41 / 2 \mathrm{H}-90$	6	31	28,700
6-1/4	2-1/4	NC46	5-29/32	31	28,000
6-1/4	2-1/2	NC46	5-29/32	31	25,700
6-1/4	2-3/4	NC46	5-29/32	31	23,100
6-1/4	2-13/16	NC46	5-29/32	31	22,400
6-1/4	2-13/16	NC50	6-1/16	31	23,000
6-1/4	3	NC46	5-29/32	31	20,300
6-1/2	2-1/4	NC46	6-3/32	31	28,000
6-1/2	2-1/4	$41 / 2 \mathrm{H}-90$	6	31	28,700
6-1/2	2-1/4	NC50	6-11/32	31	29,700
6-1/2	2-1/2	NC46	6-3/32	31	25,700
6-1/2	2-13/16	NC46	6-3/32	31	22,400
6-1/2	2-13/16	NC50	6-11/32	31	29,700
6-1/2	2-7/8	NC50	6-11/32	31	29,700
6-1/2	3	$41 / 2 \mathrm{H}-90$	6	31	21,100
6-3/4	2-1/4	NC50	6-11/32	31	36,700
6-3/4	2-1/2	NC50	6-11/32	31	35,800
6-3/4	2-1/2	NC46	6-11/32	31	25,700
6-3/4	2-13/16	NC50	6-11/32	31	32,300
6-3/4	2-7/8	NC50	6-11/32	31	31,500
6-3/4	3	NC50	6-11/32	31	30,000

*Performances calculated for products manufactured as per API.

Pipe Body				Slick	
Torsional Strength*	Sending Strength Ratio	Total Weight Slick	Weight/Foot Slick	Total Weight Spiral	Weight/Foot Spiral
(ft-lbs)		(lbs)	(lbs/ft)	(lbs)	(lbs/ft)

Drill Collar Data

		Pipe Body			
OD	ID	Connection	Bevel Diameter	Overall Length	Recommended Make-Up Torque*
(in)	(in)		(in)	(ft)	(ft-Ibs)
7	2-1/4	NC50	6-31/64	31	38,400
7	2-1/2	NC50	6-31/64	31	35,800
7	2-13/16	NC50	6-31/64	31	32,300
7	2-13/16	$51 / 2 \mathrm{H}-90$	6-5/8	31	36,500
7	2-13/16	$51 / 2 \mathrm{H}-90$	6-5/8	31	36,500
7	2-13/16	$51 / 2 \mathrm{FH}$	6-23/32	31	32,800
8	2-1/4	$65 / 8$ REG	7-33/64	31	60,300
8	2-1/2	$65 / 8$ REG	7-33/64	31	57,400
8	2-13/16	$65 / 8$ REG	7-33/64	31	53,300
8	2-13/16	NC56	7-31/64	31	48,200
8	3	$65 / 8$ REG	7-33/64	31	50,700
8	3	$65 / 8 \mathrm{H}-90$	7-1/2	31	53,600
8	3-1/4	$65 / 8$ REG	7-33/64	31	46,900
8	3-3/8	$65 / 8$ REG	7-33/64	31	44,900
8-1/4	2-13/16	$65 / 8$ REG	7-45/64	31	53,300
8-1/4	3	$65 / 8$ REG	7-45/64	31	50,700
8-1/4	3-3/16	$65 / 8$ REG	7-45/64	31	47,900
8-1/4	3-1/4	$65 / 8$ REG	7-45/64	31	46,900
8-1/2	2-13/16	$65 / 8$ REG	7-45/64	31	53,300
8-1/2	2-13/16	NC61	8	31	68,400
8-1/2	3	$65 / 8$ REG	7-45/64	31	50,700
8-1/2	3-1/4	$65 / 8$ REG	7-45/64	31	46,900
9	2-13/16	$75 / 8$ REG	8-1/2	31	84,400
9	2-13/16	$65 / 8 \mathrm{FH}$	8-29/64	31	84,000
9	3	$75 / 8$ REG	8-1/2	31	84,400
9	3	$65 / 8 \mathrm{FH}$	8-29/64	31	81,000
9	3-1/2	$65 / 8 \mathrm{FH}$	8-29/64	31	72,100
9-1/2	2-3/4	$75 / 8$ REG	8-13/16	31	92,600
9-1/2	2-13/16	$75 / 8$ REG	8-13/16	31	91,600
9-1/2	3	7 5/8 REG	8-13/16	31	88,600
9-1/2	3	NC70	8-31/32	31	102,000
9-1/2	3-1/16	7 5/8 REG	8-13/16	31	87,500
9-1/2	3-1/2	$75 / 8$ REG	8-13/16	31	79,500
9-3/4	3	$75 / 8$ REG LT	9-1/4	31	91,800
10	3	$85 / 8$ REG	9-23/32	31	109,000
10	3	$75 / 8$ REG LT	9-1/4	31	91,800
11	3	$85 / 8$ REG LT	10-1/2	31	131,000

*Performances calculated for products manufactured as per API.

Pipe Body		STick		Spiraled		
Torsional Strength*	Bending Strength Ratio	Total Weight Slick	Weight/Foot Slick	Total Weight Spiral	Weight/Foot Spiral	OD
(ft-lbs)		(lbs)	(lbs/ft)	(lbs)	(lbs/ft)	(in)
61,400	2.54	3,590	117	3,380	110	
57,300	2.61	3,500	114	3,290	107	
51,600	2.73	3,360	110	3,150	103	
64,900	2.40	3,360	110	3,150	103	
64,900	2.40	3,360	110	3,150	103	
52,400	1.72	3,360	110	3,150	103	
96,500	2.50	4,810	157	4,560	149	
91,800	2.54	4,720	154	4,460	146	
85,400	2.60	4,580	150	4,330	142	
77,200	3.02	4,580	150	4,330	142	
81,100	2.66	4,490	147	4,240	139	
95,400	2.50	4,490	147	4,240	139	
75,100	2.75	4,360	143	4,110	134	
71,900	2.81	4,300	140	4,040	132	
85,400	2.93	4,910	161	4,630	151	
81,100	2.99	4,820	158	4,540	148	
76,600	3.07	4,730	155	4,440	145	
75,100	3.10	4,700	154	4,410	144	
85,400	3.27	5,250	172	4,960	162	
109,000	2.59	5,250	172	4,960	162	
81,100	3.34	5,160	169	4,870	159	
75,100	3.46	5,040	165	4,750	155	
135,000	2.28	5,960	195	5,430	178	
134,000	2.41	5,970	195	5,440	178	
135,000	2.31	5,880	192	5,340	175	
130,000	2.44	5,880	192	5,350	175	
115,000	2.56	5,610	184	5,080	166	
148,000	2.78	6,750	221	6,200	203	
147,000	2.78	6,720	220	6,170	202	
142,000	2.81	6,630	217	6,080	199	
164,000	2.34	6,620	217	6,070	199	
140,000	2.83	6,600	216	6,050	198	
127,000	2.93	6,370	208	5,820	190	
147,000	3.09	7,020	230	6,470	212	
175,000	1.98	7,420	243	6,800	222	
147,000	3.38	7,430	243	6,800	222	
209,000	2.84	9,140	299	8,410	275	

Drill Collar Performance Datasheet

Overview

The Drill Collar Performance Datasheet is an easy-to-use document summarizing the performances and other technical characteristics of drill collars manufactured by COMMAND SMFI.

This document provides key performance characteristics such as tensile strength, torsional strength, and make-up torque range, as well as other product specific performance data.

An overview of some additional information available in the Drill Collar Performance Datasheet is shown below.
Useful datasheet definition:
> Bending Strength Ratio (BSR): This bending criteria is defined in the API spec RP7G as an inertia ratio between pin and box connection. A rotary shouldered connection that has a BSR of 2.5 (or $2.5: 1$) is generally accepted as an average balanced connection.

Kelly Cock Valves

Application and General Use

Kelly Cock Valves are devices that allow for shutting the internal bore of the drill string keeping the mud column in the top drive or the Kelly when disconnecting from the drill string. It controls the flow of the mud during normal drilling operations and is operated from the rig floor. Standard configurations include two Kelly Cock Valves; an upper Kelly Valve and lower Kelly Valve.

Product Description

The Kelly Cock Valve is designed and manufactured as a one-piece or a two-piece Kelly Valve for free-passage and maximum circulation of the drilling fluid minimizing pressure loss.

Kelly Cock Valves are supplied with either API or proprietary connections upon request.
All Kelly Cock Valves are manufactured according to the latest edition of the API 7-1 or NS1 specification.
KC2S Kelly Valves are available in either standard or $\mathrm{H}_{2} \mathrm{~S}$ resistant versions and are supplied according to Class 1 construction.

Main Features

>Simple construction for trouble-free operations and easy servicing
>Sealed lubrication packing
> 10,000 or $15,000 \mathrm{PSI}$ working pressure (testing pressure 15,000 and 22,500 PSI respectively)
> KC2S Kelly Valves are delivered with an operating wrench and disassembly tool
Other configurations available upon request, subject to engineering department approval.

The KC2S product range is available in 9 different series allowing the following passage IDs:

SERIES	ID (IN)
201	$1-1 / 4$
202	$1-3 / 4$
203	$2-1 / 8$
204	$2-1 / 4$
205	$2-7 / 16$
206	$2-13 / 16$
207	$3-1 / 16$
208	$3-1 / 4$
209	$4-1 / 4$

Hydraulic Testing

Each Kelly Valve is hydraulically bench tested according to API spec 7-1 (latest edition) and delivered with its individual pressure test records.

The tests are carried out in two steps:
> SHELL TESTING during which the valve is pressurized to the test pressure for 3 minutes, then depressurized and pressurized again for at least 10 minutes.
> SEAT TESTING during which the valve is pressurized from the pin end to its working pressure for at least 5 minutes.

During the pressure-holding period timing starts when pressure stabilization is achieved. No visually detectable leakage is permitted during the test time period and the pressure drop shall be no greater than maximum 1% of the pressure test value with a zero leak rate.

Valve Compatibility

In case the Retrievable Drop-in Check Valve (RDCV) has to be dropped into the drill string, the compatibility of RDCV OD and KC2S free ID passage is a critical factor. The table to the right shows shows the compatibility between KC2S Kelly Cocks and Drop-in Check Valves.

One Piece Kelly Cock Valve

Figure 1 - Kelly Cock Cutaway View

KELLY COCK REQUIRED		RDCV
KC2S SERIES	ID (IN.)	SERIES
202	$1-3 / 4$ ID	901
203	$2-1 / 8$ ID	902
204	$2-1 / 4$ ID	903
$204 / 205$	$2-1 / 4 / 2-7 / 16$ ID	904
206	$2-13 / 16$ ID	905
207	$3-1 / 16$ ID	906
207	$3-1 / 16 ~ I D$	907
208	$3-1 / 4 ~ I D$	908

Figure 2 - Kelly Cock
Exploded View

One Piece Kelly Cock

One Piece Kelly Cock			
TYPE OF KIT	DESCRIPTION	STANDARD VERSION	H2S TRIM VERSION
Seal Kit	Includes all parts needed for replacement each time the Valve is disassembled; i.e. 0 -Ring Seals, Springs, Knob Plate and Snap Ring or Screw Set.	Items 2, 6, 8, 9, 11, 13 \& 14	Items 6, 8, 9, 11, 13, 14 \& 17
Complete Repair Kit with Tooling	Includes all inside Valve components plus its Operating Wrench and Disassembling Tool.	Items 2 to 16	Items 3 to 14 \&17
Complete Repair Kit without Tooling	Includes all KC2S Inside Valve components.	Items 2 to 14	Items 3 to 17

Two Piece Kelly Cock Valve

Figure 1 - Kelly Cock Cutaway View

Figure 2 - Kelly Cock
Exploded View

Two Piece Kelly Cock

Two Piece Kelly Cock			
TYPE OF KIT	DESCRIPTION	STANDARD VERSION	H2S TRIM VERSION
Seal Kit	Includes all parts needed for replacement each time the Valve is disassembled; i.e. 0 -Ring Seals, Springs, Knob Plate and Snap Ring or Screw Set.	Items 2, 6, 8, 9, 11, 13, 14 \& 18	Items 6, 8, 9, 11, 13, 14,17 \&18
Complete Repair Kit with Tooling	Includes all internal parts plus Operating Wrench and Disassembling Tool.	Items 2 to 16 \& 18	Items 3 to 14 \& 17-18
Complete Repair Kit without Tooling	Includes all internal parts.	Items 2 to 14 \& 18	Items 3 to 18

Spare Parts and References

Standard Repair Kit									
ITEM	201	202	203	204	$\begin{gathered} \text { SERIES } \\ 205 \end{gathered}$	206	207	208	209
Seal kit for One Piece Kelly Cock	KCK201S021	KCK202S021	KCK203S021	KCK204S021	KCK205S021	KCK206S021	KCK207S021	KCK208S021	KCK209S021
Seal kit for Two Piece Kelly Cock	KCK201S106	KCK202S103	KCK203S106	KCK204S102	KCK205S104	KCK206S103	KCK207S136	KCK208S104	KCK209S100
Complete repair kit without tooling for One Piece Kelly Cock	KCK201S023	$\begin{aligned} & \text { KCK202S025 } \\ & \text { Valve } 0 D<41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203S102 } \\ & \text { Valve } 0 \mathrm{DD}<53 / 8 \end{aligned}$	$\begin{gathered} \text { KCK204S100 } \\ \text { Valve } 0 \mathrm{D}<6 \end{gathered}$	KCK205S023	KCK206S023	$\begin{aligned} & \text { KCK207S125 } \\ & \text { Valve } 00<73 / 8 \end{aligned}$	KCK208S023	KCK209S023
		$\begin{aligned} & \text { KCK2O2SO23 } \\ & \text { Valve } 0 \mathrm{D}>=41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203SO23 } \\ & \text { Valve } 0 D>=53 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK204SO23 } \\ & \text { Valve } 0 \mathrm{D}>=6 \end{aligned}$			$\begin{aligned} & \text { KCK207S023 } \\ & \text { Valve } 0 \mathrm{D}>=73 / 8 \end{aligned}$		
Complete repair kit without tooling for Two Piece Kelly Cock	KCK201S108	KCK202S1111	$\begin{aligned} & \text { KCK203S108 } \\ & \text { Valve } 0 \mathrm{D}<53 / 8 \end{aligned}$	$\begin{gathered} \text { KCK204S103 } \\ \text { Valve } 00<6 \end{gathered}$	KCK205S105	KCK206S105	$\begin{aligned} & \text { KCK207S138 } \\ & \text { Valve } 00<73 / 8 \end{aligned}$	KCK208S105	KCK209S101
		$\begin{aligned} & \text { KCK202S105 } \\ & \text { Valve } 0 \mathrm{D}>=41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203S110 } \\ & \text { Valve } 0 D>=53 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK204S104 } \\ & \text { Valve } 0 \mathrm{D}>=6 \end{aligned}$			$\begin{aligned} & \text { KCK207S140 } \\ & \text { Valve 0D }>=73 / 8 \end{aligned}$		
Complete repair kit with tooling for One Piece Kelly Cock	$\begin{aligned} & \text { KCK201S022 } \\ & \text { Valve } 0 D<43 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK2O2SO24 } \\ & \text { Valve } 0 D<41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203S101 } \\ & \text { Vave } 00<53 / 8 \end{aligned}$	$\underset{\text { VCKlve } 00<6}{\text { KCK204S101 }}$	KCK205S022	KCK206S022	$\begin{aligned} & \text { KCK207S124 } \\ & \text { Valve } 00<73 / 8 \end{aligned}$	KCK208S022	KCK209S022
		$\begin{gathered} \text { KCK202SO22 } \\ 41 / 4=<\text { Valve 0D } \\ <61 / 4 \end{gathered}$	$\begin{gathered} \text { KCK203SO22 } \\ 53 / 8=<\text { Valve } 0 \mathrm{D} \\ <57 / 8 \end{gathered}$						
	KCK201S109 Valve 0 D $>=43 / 4$	$\begin{aligned} & \text { KCK202S } 112 \\ & \text { Valve } 0 \mathrm{D}>=6 \\ & \hline 1 / 4 \end{aligned}$	KCK203S100 Valve OD >=57/8	$\begin{gathered} \text { KCK204SO22 } \\ \text { Valve } 0 \mathrm{D}>=6 \end{gathered}$			KCK207S022 Valve $0 \mathrm{D}>=73 / 8$		
Complete repair kit with tooling for Two Piece Kelly Cock	$\begin{aligned} & \text { KCK201S107 } \\ & \text { Valve } 0 D<43 / 4 \end{aligned}$	KCK202S113 Valve 0 < $<41 / 4$	KCK203S107 Vave $0 \mathrm{D}<53 / 8$	$\underset{\text { KCK204S105 } 00<6}{\text { Valve } 0<1}$	KCK205S106	KCK206S104	KCK207S137 Valve $0 \mathrm{D}<73 / 8$	KCK208S106	KCK209S102
		$\begin{aligned} & \text { KCK202S104 } \\ & 41 / 4=<\text { Valve OD } \\ &<61 / 4 \end{aligned}$	KCK203S109 $53 / 8=<$ Valve OD <57/8						
	KCK201S110 Valve $0 D>=43 / 4$	$\begin{aligned} & \text { KCK202S114 } \\ & \text { Valve } 0 D>=61 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203S110 } \\ & \text { Valve } 0 D>=57 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK204S106 } \\ & \text { Valve } 0 \mathrm{D}>=6 \end{aligned}$			$\begin{aligned} & \text { KCK207S139 } \\ & \text { Valve } 00>=73 / 8 \end{aligned}$		

$\mathrm{H}_{2} \mathrm{~S}$ TRIM Repair Kit									
ITEM	201	202	203	204	$\begin{gathered} \text { SERIES } \\ 205 \end{gathered}$	206	207	208	209
Seal kit for One Piece Kelly Cock	KCK201H021	KCK202H021	KCK203H021	KCK204H021		KCK206H024	KCK207H021	KCK208H024	Not created
Seal kit for Two Piece Kelly Cock	KCK201H101	KCK202H104	KCK203H105	KCK204H100		KCK206H103	KCK207H104	KCK208H100	Not created
Complete repair kit without tooling for One Piece Kelly Cock	KCK201H023	$\begin{aligned} & \text { KCK202H109 } \\ & \text { Valve } 00<41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203H109 } \\ & \text { Valve } 0 \mathrm{D}<53 / 8 \end{aligned}$	/	KCK205H023	KCK206H026	KCK207H112 Valve 0D $<73 / 8$	KCK208H026	Not created
		$\begin{aligned} & \text { KCK2O2HO23 } \\ & \text { Valve } \mathrm{OD}>=4 \mathrm{~T} / 4 \end{aligned}$	$\begin{aligned} & \text { KCK2O3H023 } \\ & \text { Valve } 0 \mathrm{D}>=53 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK2O4HO23 } \\ & \text { Valve } 0 \mathrm{D}>=6 \end{aligned}$			$\begin{aligned} & \text { KCK207H023 } \\ & \text { Valve } 0 \mathrm{D}>=73 / 8 \end{aligned}$		
Complete repair kit without tooling for Two Piece Kelly Cock	KCK201H102	KCK202H108 Valve 0 < $41 / 4$	KCK203H110 Valve 0 < $53 / 8$	1	KCK205H100	KCK206H104	KCK207H106 Valve 0 D $<73 / 8$	KCK208H101	Not created
		$\begin{aligned} & \text { KCK2O2H105 } \\ & \text { Valve OD }>=41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203H106 } \\ & \text { Valve } 0 \mathrm{D}>=53 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK204H101 } \\ & \text { Valve } 0 \mathrm{D}>=6 \end{aligned}$			$\begin{aligned} & \text { KCK207H109 } \\ & \text { Valve } 0 \mathrm{D}>=73 / 8 \end{aligned}$		
Complete repair kit with tooling for One Piece Kelly Cock	$\begin{aligned} & \text { KCK201H100 } \\ & \text { Valve 0D >= } 43 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK202H111 } \\ & \text { Valve } 0 \mathrm{D} \text { < } 41 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCK203H111 } \\ & \text { Valve } 0 \mathrm{D}<53 / 8 \end{aligned}$	1	KCK205H022	KCK206H025	KCK207H113$\text { Valve } 0 \mathrm{D}<73 / 8$	KCK208H025	Not created
		$\begin{aligned} & \text { KCK2O2HO22 } \\ & \text { Valve } 41 / 4=<0 \mathrm{D} \\ & <61 / 4 \end{aligned}$	$\begin{gathered} \text { KCK2O3H022 } \\ 53 / 8=<\text { Valve } 00 \\ <57 / 8 \end{gathered}$						
	KCK201H100 $\text { Valve } 0 D<43 / 4$	$\begin{aligned} & \text { KCK2O2H103 } \\ & \text { Valve } 0 \mathrm{D}>=61 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203H104 } \\ & \text { Valve } 0 \mathrm{D}>=57 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK204H022 } \\ & \text { Valve 0D >=6 } \end{aligned}$			$\begin{aligned} & \text { KCK207H109 } \\ & \text { Valve } 0 \mathrm{D}>=73 / 8 \end{aligned}$		
Complete repair kit with tooling for Two Piece Kelly Cock	KCK201H103 Valve $0 D>=43 / 4$	$\begin{aligned} & \text { KCK202H110 } \\ & \text { Valve } 0 \mathrm{D}<41 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203H112 } \\ & \text { Valve } 0 \mathrm{D}<53 / 8 \end{aligned}$	1	KCK205H101	KCK206H105	$\begin{aligned} & \text { KCK207H105 } \\ & \text { Valve } 00<73 / 8 \end{aligned}$	KCK208H102	Not created
		$\begin{gathered} \text { KCK202H1O6 } \\ \text { Valve } 41 / 4=<0 \mathrm{D} \\ >61 / 4 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { KCK203H107 } \\ \text { Valve } 53 / 8=00 \\ >57 / 8 \end{array} \end{gathered}$						
	KCK201H104 $\text { Valve } 0 D<43 / 4$	$\begin{aligned} & \text { KCK202H107 } \\ & \text { Valve } 0 \mathrm{D}>=61 / 4 \end{aligned}$	$\begin{aligned} & \text { KCK203H108 } \\ & \text { Valve OD }>=57 / 8 \end{aligned}$	$\begin{aligned} & \text { KCK204H102 } \\ & \text { Valve } 0 \mathrm{D}>=6 \end{aligned}$			$\begin{aligned} & \text { KCK207H108 } \\ & \text { Valve } 0 \mathrm{D}>=73 / 8 \end{aligned}$		

Operational Benefits

COMMAND SMFI offers KC2S Kelly Valves with PTFE rings inserted in both upper and lower seats, which provide high sealing capability, even at low pressures. KC2S internal parts are made of high grade heat treated stainless steel. The design of the body limits plug rotation to 90° between open and closed positions. Two KC2S versions are offered to suit drilling environments:
> The standard version for normal drilling conditions with an inside surface treated to enhance mud corrosion resistance and maintenance operations.
> The $\mathrm{H}_{2} \mathrm{~S}$ trim version which has been designed for $\mathrm{H}_{2} \mathrm{~S}$ environments with internal parts made of corrosion resistant materials matching the NACE MR0175 standard (latest edition), fitted in a standard body.
> Full NACE available upon request.

Inside Blowout Preventer (I-BOP)

Application and General Use

Wells can at times experience unpredictable pressure differentials causing flow into the well bore that can potentially be catastrophic for the rig and rig personnel, if uncontrolled. Safety Valves are an essential component to maintaining the safety of the well and drilling operations. Safety Valves are configured in the drill string and used on the rig floor and down-hole to manage safe operations while controlling kicks and preventing back flow of the drilling mud during the drilling process.

Product Description

The Inside Blowout Preventer (I-BOP) Valve is a heavy duty check valve connected to the drill string for use on the rig floor level to protect from kicks at surface. It can be left in the drill string as long as necessary to reestablish well control with over-balanced pressure.

I-BOP valves are supplied with either API or with proprietary connections upon request. All I-BOP valves are manufactured to API 7-1 or NS1 latest edition.
I-BOP valves are available in both standard or $\mathrm{H}_{2} \mathrm{~S}$ resistant versions and supplied according to Class 1 construction.

Main Features

> OD sizes ranging from $3-3 / 8$ " to $9-1 / 2^{\prime \prime}$
> ID sizes ranging from $1-1 / 2$ " to $2-13 / 16$ "
> 10,000 or $15,000 \mathrm{PSI}$ working pressure (testing pressure 15,000 or 22,500 PSI respectively)

The I-BOP product range comes with 4 sizes corresponding to internal part dimensions as follows:

Other configurations available upon request, subject to engineering department approval.

Hydraulic Testing

Each I-BOP valve is hydraulically bench tested according to API spec 7-1 (latest edition) and delivered with its individual pressure record sheets.

The pressure test is carried out in two steps:
> SHELL TESTING during which the valve is pressurized to the test pressure for 3 minutes, then depressurized and pressurized again for at least 10 minutes (see figures $1 \& 2$).
> SEAT TESTING during which the valve is pressurized from the pin end to its working pressure for at least 5 minutes (see figures $1 \& 2$).

During the pressure-holding period, timing starts when pressure stabilization is achieved. No visually detectable leakage is permitted during the test time period and pressure drop shall be no greater than maximum 1% of the pressure test value with a zero leak rate.

Operational Benefits

I-BOP body and internal parts are made of high grade heat treated steel. The I-BOP valve sealing is achieved through a PTFE ring inserted in the valve. Two I-BOP construction versions are available:
> The standard version which is suitable for normal drilling conditions. The standard body inner surface is surface treated to improve resistance against mud corrosion and maintenance operations.
> The $\mathrm{H}_{2} \mathrm{~S}$ trim version which has been designed for $\mathrm{H}_{2} \mathrm{~S}$ environments. Internal parts are made of corrosion resistant materials matching NACE MR0175 standard (latest edition) and fitted in a standard body.

Inside BOP

Figure 1 - Inside BOP Cutaway View

Figure 2 - Inside BOP Exploded View

Spare Parts and References

Ітем	Standard version			
	Trim 1	Trim 2	Trim 3	Trim 4
1 Valve Release Screw	BVP100S001	BVP200S001	BVP200S001	BVP400S001
5 Valve Head with Insert	BVP100S005	BVP200S005	BVP300S005	BVP400S005
6 Valve Seat	BVP100S006	BVP200S006	BVP300S006	BVP400S006
7 Valve Spring	BVP100S007	BVP200S007	BVP300S007	BVP400S007
9 Large 0-Ring	JOIN044V01	JOIN053V01	JOINR41V01	JOINR50V01
10 Small 0-Ring	JOINR33V01	JOINR36V01	JOINR36V01	JOINR41V01
Seal Kit	BVK100S001	BVK200S001	BVK300S001	BVK400S001
Complete Repair Kit	BVK100S002	BVK200S002	BVK300S002	BVK400S002

item	Standard version			
	Trim 1	Trim 2	Trim 3	Trim 4
2 Plug				
3 Release Rod	Part numbers depend on valve configuration will be supply upon request			
8 Lower Valve Body				

ITEM	$\mathrm{H}_{2} \mathrm{~S}$ SERVICE VERSION			
	Trim 1	Trim 2	Trim 3	Trim 4
1 Valve Release Screw	BVP100S001	BVP200S001	BVP200S001	BVP400S001
5 Valve Head with Insert	BVP100H005	BVP200H005	BVP300H005	BVP400H005
6 Valve Seat	BVP100H006	BVP200H006	BVP300H006	BVP400H006
7 Valve Spring	BVP100S007	BVP200S007	BVP300S007	BVP400S007
9 Large 0-Ring	JOIN044V01	JOIN053V01	JOINR41V01	JOINR50V01
10 Small 0-Ring	JoinR33V01	Joinr36V01	JoinR36V01	Joink41V01
Seal Kit	BVK100S001	BVK200S001	BVK300S001	BVK400S001
Complete Repair Kit	BVK100H002	BVK200H002	BVK300H002	BVK400H002

item	$\mathrm{H}_{2} \mathrm{~S}$ Service version			
	Trim 1	Trim 2	Trim 3	Trim 4
2 Plug				
3 Release Rod	Part numbers depend on valve configuration will be supply upon request			
8 Lower Valve Body				

Retrievable Drop in Check Valve (RDCV)

Product Description

The Retrievable Drop-in Check Valve (RDCV) is used to control back flow from high pressure formations into the well and through the drill string back to the surface. It also allows for downward fluid circulation within the drill string. When the back flow is under control, the Drop-in Check Valve can be retrieved using a wire line.
If a kick or back flow starts while tripping out the pipes, it can be controlled with a drill pipe Safety Valve or Kelly Cock to close the flow through the drill pipe before reconnecting the Kelly and for pumping the RDCV down to its landing sub.
By design, the Check Valve is equipped with a self-locking (under down hole pressure) feature.

Main Features

> Landing Sub OD ranging from $3-3 / 8^{\prime \prime}$ to $8-1 / 2^{\prime \prime}$
> Check Valve OD sizes ranging from $1-9 / 32$ " to $3-7 / 64^{\prime \prime}$
> Check Valve ID sizes ranging from $3 / 8$ " to $1-11 / 16$ "
> 10,000 or 15,000 PSI working pressure (testing pressure 15,000 or $22,500 \mathrm{PSI}$ respectively)
> Supplied with API or proprietary connections
Other configurations available upon request, subject to engineering department approval.

The RDCV product range has 8 Valve series corresponding to different Check Valve outside diameters (OD):

SERIES	CHECK VALVE OD (IN)
901	$1-9 / 32$
902	$1-25 / 32$
903	$2-5 / 32$
904	$2-15 / 64$
905	$2-15 / 32$
906	$2-27 / 32$
907	$3-3 / 64$
908	$3-7 / 64$

Figure 1 - Landing Sub Cutaway View

Figure 2 - Landing Sub Exploded View

Figure 6 - Overshot Exploded View

Hydraulic Testing

Each RDCV is hydraulically bench tested according to API spec 7-1 (latest edition) and delivered with its individual pressure test records.

The tests are carried out in two steps:
>SHELL TESTING during which the valve is pressurized to the test pressure for 3 minutes, then depressurized and pressurized again for at least 10 minutes.
>SEAT TESTING during which the valve is pressurized from the pin end to its working pressure for at least 5 minutes.

During the pressure-holding period, timing shall start when pressure stabilization is achieved. No visually detectable leakage is permitted during the test time period and the pressure drop shall be no greater than maximum 1% of the pressure test value with a zero leak rate.

Valve Compatibility

In case the Check Valve has to be dropped into the drill string, the compatibility of Check Valve OD and Kelly Cock Valve free ID passage is a critical factor. The table to the right shows the compatibility between KC2S Kelly Cock Valves and Retrievable Drop-in Check Valves:

RDCV	KELLY COCK REQUIRED	
SERIES	KC2S SERIES	KC2S ID PASSAGE (in.)
901	202	$1-3 / 4$ ID
902	203	$2-1 / 8$ ID
903	204	$2-1 / 4$ ID
904	$204 / 205$	$2-1 / 4$ ID
905	206	$2-13 / 16$ ID
906	207	$3-1 / 16$ ID
907	207	$3-1 / 16$ ID
908	208	$3-1 / 4$ ID

Operational Data

Standard Version								
ITEM	SERIES							
	901	902	903	904	905	906	907	908
Check Valve OD	19/32	125/32	$25 / 32$	$215 / 64$	$215 / 32$	$227 / 32$	3 3/64	$37 / 64$
Requested Drill String ID	111/32	127/32	$27 / 32$	219/64	$217 / 32$	2 29/32	$37 / 64$	$311 / 64$
Check Valve ID	3/8	5/8	3/4	7/8	$11 / 8$	$13 / 8$	19/16	111/16
Check Valve weight (lbs/kg)	$5.3 / 2.4$	$6.6 / 3.0$	15.4 / 7.0	19.0 / 8.6	24.4/11.0	$28.2 / 12.8$	32.7 / 14.8	38.0 / 15.8
Landing Sub Drift diameter	17/64	129/64	127/32	$27 / 64$	$21 / 8$	$233 / 64$	211/16	$225 / 32$
Overshot weight (lbs/kg)	1.3/0.6	$3.8 / 1.7$	$4.8 / 2.2$	$5.8 / 2.6$	$8.8 / 4.0$	9.3 / 4.2	10.1/4.6	$11.0 / 5.0$

Spare Parts and References

Standard Version								
ITEM	SERIES							
	901	902	903	904	905	906	907	908
Overshot	RD0901S001	RD0902S001	RD0903S001	RD0904S001	RD0905S001	RD0906S001	RD0907S001	RD0908S001
Check Valve	RDV901S001	RDV902S001	RDV903S001	RDV904S001	RDV905S001	RDV906S001	RDV907S001	RDV908S001
Landing Sub Sleeve Kit includes items L2 to L5	RDS901S001	RDS902S001	RDS903S001	RDS904S001	RDS905S001	RDS906S001	RDS907S001	RDS908S001
Seal Kit includes items V6x2, V7x2, V9	RDK901S001	RDK902S001	RDK903S001	RDK904S001	RDK905S001	RDK906S001	RDK907S001	RDK908S001
$\mathrm{H}_{2} \mathrm{~S}$ Service Version								
ITEM	SERIES							
	901	902	903	904	905	906	907	908
Overshot	RD0901S001	RD0902S001	RD0903S001	RD0904S001	RD0905S001	RD0906S001	RD0907S001	RD0908S001
Check Valve	RDV901H001	RDV902H001	RDV903H001	RDV904H001	RDV905H001	RDV906H001	RDV907H001	RDV908H001
Landing Sub Sleeve Kit includes items L2,L3,L4,L6	RDS901T001	RDS902T001	RDS903T001	RDS904T001	RDS905T001	RDS906T001	RDS907T001	RDS908T001
Seal Kit Includes items V6x2, V7x2, V9	RDK901H001	RDK902H001	RDK903H001	RDK904H001	RDK905H001	RDK906H001	RDK907H001	RDK908H001

Operational Benefits

RDCVs body and internal parts are made of high grade heat treated steel. Sealing is achieved through a metal to metal contact between a ball and a seat.

Two RDCV versions exist to suit all drilling environments:
> The standard version which is suitable for normal drilling conditions.
> The $\mathrm{H}_{2} \mathrm{~S}$ trim version which has been designed for $\mathrm{H}_{2} \mathrm{~S}$ environments in which the internal parts are made of corrosion resistant materials matching the NACE MR0175 standard (latest edition), fitted in a standard steel landing sub.

Product Performance

COMMAND SMFI collar-based non-magnetic drilling products are made from Amagnit ${ }^{\text {t" }} 501$, a chrome manganese carbon austenitic alloy. Amagnit'" 501 is specifically designed for extreme service. This alloy ensures nonmagnetic steel, which is resistant to stress corrosion cracking, providing superior mechanical properties with low magnetic permeability, excellent machineability and no tendency for galling. Consistent non-magnetic behavior as well as material that is free of hot spots is essential in this special alloy steel. Laboratory tests and actual field use confirm that Amagnit ${ }^{\text {tm }} 501$ provides very good resistance to stress corrosion cracking in an aggressive chloride environment. For specific downhole applications where higher mechanical properties are required as can often be the case with MWD/LWD housings, a high strength corrosion resistant steel Amagnit ${ }^{\text {t" }} 601$ as well as other specific client alloys are available upon request.

Operational Benefits

COMMAND SMFI has over 30 years of experience manufacturing non-magnetic tools for the drilling industry. A dedicated plant based in France with state of the art equipment and specialized engineers is able to offer our clients the tools needed for all directional drilling applications.

Rotary Substitutes (Subs)

The Solution: Rotary Substitutes (Subs)
Subs are generally part of most drill strings and have two main functions:
> To crossover connections
> To extend the life of a more expensive drill stem item and/or as a disposable component

This means that subs have to be manufactured from selected bars of alloy steel, heat-treated to provide the strength and toughness required to carry the entire weight of the drill string or to withstand high torque differentials. Generally, subs exceed API specifications for drill pipe tool joint mechanical properties.

Subs are classified into four main categories:
> Bit subs or crossover subs are used to connect the drill bit to the first piece of BHA equipment or to crossover connections in the drill string. Drill bits are manufactured with a pin, making make-up impossible without a bit sub.
> Lift subs or handling subs are used to lift BHA components from the catwalk to the rig floor.
> Top drive subs or saver subs serve as the sacrificial element between the drill string and the top drive, reducing repair and maintenance costs.
Workover subs or circulating subs are used to limit the allowable fluid-circulation rates.

Product Performance

Bit subs or crossover subs are manufactured from AISI 4145H-modified alloy, heat-treated to a Brinell Hardness range of 285-341 with a Charpy "V" notch minimum impact strength of $40 \mathrm{ft} / \mathrm{lb}$ at $70^{\circ} \mathrm{F}$ and one inch below the surface. Connections can be cold rolled after machining, if requested. All connections are phosphate coated to impede galling during initial make-up. They are available in standard lengths of 36 " and 48 " with other configurations upon request.

Crossover subs come with a minimum yield strength of 110 KSI and are manufactured integral with the following connections:
$>$ box x pin
> box x box
$>$ pin x pin

Lift subs and lift plugs are made of AISI 4145H-modified steel and manufactured to the same specifications used for drill collars. They are available in sizes from $3-1 / 8$ " to 11".

Lift Plug

Lift Subs

Operational Benefits

 COMMAND SMFI offers a wide range drill string products and accessories with standard API or proprietary high-performance connections to meet the most demanding drilling requirements.

COMMAND SMFI drill stem subs are available in any size or configuration required.

Pup Joints

The Solution: Pup Joints for Easy Surface Handling \& Drilling Practices

Pup Joints are commonly used to adjust the length of the drill string to the elevation of rotary table for easy surface handling and drilling practices. They undergo the same stresses as drill pipe and their performance depends primarily on their superior mechanical properties.
Pup Joints are short drill pipe used to adjust the length of the drill string and are ordered to match all drill pipe dimensions.

Product Performance

Pup Joints are manufactured from AISI 4145H or 4140H-modified alloy, heat-treated to a Brinell Hardness range of 285-341 with a Charpy "V" notch
 minimum impact strength of $40 \mathrm{ft} / \mathrm{bb}$ at $70^{\circ} \mathrm{F}$ and one inch below the surface. Pup Joints are heat-treated to 110,000 PSI minimum yield. All connections are phosphate coated to impede galling during initial make-up. They are available in standard lengths of $5^{\prime}, 10^{\prime}, 15^{\prime}$ and 20^{\prime} with other configurations upon request.

Integral Pup Joints dedicated to Sour Service applications are available. PJ -110 PUP S are Sour Service Pup Joint using ASCOWELL C material providing improved resistance to Sulfide Stress Cracking with high yield strength.

Operational Benefits

COMMAND SMFI offers a wide range drill string products and accessories with standard API or proprietary highperformance connections to meet the most demanding drilling requirements.

Nominal Size A (in)	Tool Joint OD B (in)	Tool Joint ID (in)	TJ Pin Tong C (in)	TJ Box Tong D (in)	Connection
$2-3 / 8$	$3-3 / 8$	$1-1 / 2$	9	12	
$2-7 / 8$	$4-1 / 8$	$2-1 / 8$	9	11	NC26
$3-1 / 2$	$4-3 / 4$	$2-9 / 16$	10	$12-1 / 2$	NC31
$3-1 / 2$	5	$2-1 / 8$	10	$12-1 / 2$	NC38
4	$5-1 / 4$	$2-11 / 16$	9	12	NC38
$4-1 / 2$	$6-1 / 4$	3	9	12	NC40
5	$6-1 / 2$	$3-1 / 4$	9	12	NC46
5	$6-5 / 8$	$2-3 / 4$	9	12	NC50
5	$6-5 / 8$	$3-1 / 4$	9	12	NC50
$5-1 / 2$	$7-1 / 4$	$3-1 / 2$	8	10	NC50
$5-1 / 2$	$7-1 / 2$	$3-1 / 2$	10	$5-1 / 2$ FH	
$6-5 / 8$	$8-1 / 2$	$4-1 / 4$	8	12	$5-1 / 2$ FH
$6-5 / 8$	8	5	8	10	$6-5 / 8 ~ F H$

Sour Service grades and equivalent to G-105 and S-135 are available upon request
Length L(ft): 5; 10; 15; 20
Other configurations are available upon request
All hardbanding and coating options available upon request.

Stabilizers

The Solution: Preventing Undesirable Deviation with Stabilizers
Stabilizers are used to prevent undesirable deviation of the drill string. Typically, one or two stabilizers are placed in the bottom-hole assembly (BHA) to increase drill string stability. Additional stabilizers can be added to the drill string to further improve BHA solidness and minimize wellbore deviation.

Dimensions	Fishing Neck		Wall Contact	Overall Length		Blade Angle		Blade Width	Approx Weight
Hole Size (in)	Length (in)	$\begin{aligned} & \hline \text { OD } \\ & \text { (in) } \end{aligned}$	Length (in)	Near Bit (in)	String (in)	Open Design	Tight Design 360° Coverage	$\begin{aligned} & \hline \text { BW } \\ & \text { (in) } \end{aligned}$	(lbs)
6	28	4-3/4	16	69	72	15°	15°	2-3/16	320
8-1/2	28	6-1/2	16	69	73	15°	23°	2-3/8	717
12-1/4	30	8	18	77	82	15°	27°	3-1/2	1,146
12-1/4	30	9-1/2	18	77	82	15°	27°	3-1/2	1,477
16	30	9-1/2	18	87	92	15°	35°	4-1/2	2,227
17-1/2	30	9-1/2	18	89	93	15°	38°	4-1/2	2,315
26	30	9-1/2	18	98	103	15°	43°	5	3,417

Client Specs

The Solution: Products Built According to Spec to Guarantee Performance

Specifications are needed to guarantee product performance in the most demanding environments. They are vital in understanding and agreeing upon all product requirements. In addition to COMMAND SMFI design specifications, our products adhere to the most demanding industry standards or individual client specifications and are immediately suitable for use on the rig site upon delivery.

Performance

Where applicable, COMMAND SMFI manufactures products in compliance with the following API standards:
> API Specification 5DP (ISO 11961:2008)
> API Specifications 7-1 \& 7-2 (ISO 10424-1:2004
\& ISO 10424-2:2007)
> API Recommended Practice 7G (ISO 10407:1993)

COMMAND SMFI products can also be supplied with the following specifications:

```
> NS1
```

> DS1
> IRP 1.8
> Customer supplied specification

When a client requires unique specifications, a team of dedicated engineers reviews the specification to ensure it is feasible and that the manufacturing process is modified accordingly to guarantee client satisfaction.

COMMAND SMFI facilities meet the following quality standards:
>API Specification Q1
> ISO 9001
> ISO 11961

Benefits

COMMAND SMFI works together with its clients to develop unique specs to answer specific challenges. We ensure that products meet specified requirements every time.

Hardbanding

The Solution: Increase Drill String Service Life \& Reduce Casing Wear with Hardband Application

The large diameters of drill string products are susceptible to wear due to the rotation and sliding of the drill string. Various hardband alloys are used to address a variety of issues related to the durability of the products and the protection of the casing.

COMMAND SMFI plants are qualified by wire suppliers and follow application procedures accordingly. Hardbanding is applied by automatic arc-welding methods. The application process is closely monitored and controlled resulting in a uniform, low porosity, wear-resistant surface.

Performance

Hardbanding is available in raised, semi-raised or flush configurations and in open hole and casing friendly compounds.

COMMAND SMFI is a qualified applicator of the following casing friendly products:
> Duraband NC
> Arnco 100XT, 150XT \& 350XT
> Tuboscope TCS Ti and 8000
> Armacor M Star
> Castolin OTW-12Ti, OTW-13CF
> COMMAND SMFI Procasing*

COMMAND SMFI Procasing is a hard chromium alloy free of tungsten carbide used primarily on the center wear pads of Heavy Weight Drill Pipe.

Additionally, COMMAND SMFI has the following proprietary tungsten carbide products (typically for open hole):
> CF 500 (20-45 mesh) general
> CF 1000 (20-30 mesh) large
> CF 2000 (CF 1000 with metal overlay)

Standard Application:

\rightarrow Heavy Weight Drill Pipe - COMMAND SMFI offers hardbanding on tool joint pin and box sections and the center wear pad. Special requests for tool joint box elevator taper are also available.Several bands of hardbanding (generally 4" in length) is applied to the pin and box tool joints. An optional band (approximately $3 / 4$ " in length) may be applied to the box elevator taper. Two areas of hardbanding (generally 3 " long each) are applied to the center wear pad.
\rightarrow Drill Collar - Recommendations for the amount and placement of hardband depends upon the geometry of the drill collar. These recommendations may be found in the earlier section on drill collars in this catalog and are designated as Type A, B or C.

Benefits

Whether for the Drilling Contractor or the Oil Company, hardbanding plays a significant role in extending the service life and improving the performance of the drill string and casing.

Coating

The Solution: Pipe ID Protection with Internal Plastic Coating

Internal Plastic Coating (IPC) is an epoxy resin that is applied on the ID of Drill Pipe and Heavy Weight Drill Pipe as a thin layer (0.1 to $0.4 \mu \mathrm{~m}$ or 5 to 15 mils). Coating takes place at the end of the manufacturing process. The internal coating plays a key role in protecting against corrosion and improving the hydraulic efficiency of the drill string, lowering operational costs of drilling and extending the life of the drill string.

Corrosion related fatigue failures are known to be the biggest cause of fatigue failures for Drill Pipe, followed by pure and notch fatigue. While external pits on the drill pipe surface are harmless, since they are immediately polished off during downhole operation, internal notches can grow and become stress-concentration points.

Internal Plastic Coating provides a protective barrier against corrosion and extends the useful life of Drill Pipe. It also acts as an effective stress coat giving a reliable visible indicator of an over-torqued connection when IPC is missing from under the pin.

We have identified industry accepted coating suppliers and applicators near all of our manufacturing plants.

Performance

IPC solutions include:
> NOV Tuboscope - TK-34, TK-34 P, TK-34 XT
> other coating materials are available upon request

These products withstand high temperatures encountered in most drilling environments provided circulation is maintained.

Benefits

Operational benefits include:

> Corrosion barrier

> Mechanical and abrasion wear resistance
$>$ Chemical and organic acids resistance
> Improved hydraulics
> Prevention against scale deposits

Make and Break

The Solution: Save Time \& Money with Make and Break

Time is money on the drilling rig. It takes about 10 minutes per joint to break-in pipe at the rig site. A 15,000-foot drill string (about 500 joints), takes 5,000 minutes (or 83 hours) of rig and crew time. Non-productive time (NPT) can be avoided by making and breaking connections before they reach the rig floor.

Proper initial make-up is probably the most important factor affecting the life of the tool joint connections. By using controlled initial factory make-up/break-out drill pipe, galling of the threads can be minimized.

Make-up/Break-out Costs At Rig

Performance

COMMAND SMFI's make-up/break-out is consistently performed using the same procedure for each tool joint, thus avoiding material handling mishaps and the potential variability of procedure used on different rig sites. Should galling occur during the process, it can be immediately addressed and repaired at the plant prior to shipping.

Procedure for make-up/break-out:
> Joints are finish-machined, inspected and phosphate coated prior to operation.
> Threads of each box and pin member are cleaned thoroughly to remove any oil, grease or other matter.
> Box and pin threads are coated with drill pipe thread compound.
> Joints are made-up hand tight and then power-tightened to 100% of recommended make-up torque and broken-out to hand-tight condition for three successive make and break cycles.
> Joints are finally broken apart, cleaned thoroughly, and inspected to ensure that no galling of the threads and sealing shoulders has occurred.

Benefits

Factory make-up/break-out at COMMAND SMFI provides insurance against damage to connections and reduces NPT on the rig floor.

Thread Protectors

The Solution: Avoid Thread Damage with Thread Protectors

Threads can be subject to damage during transport, storage, and surface handling. These damages can reduce the life expectancy of the drill string. It is a safe and standard practice to place hard plastic thread protectors on every connection of Drill Pipe, BHA and accessories whenever these products are to be transported, stored or submitted to other surface handling.

Performance

Thread protectors, when properly used, offer a guaranteed thread protection and are available for all standard oilfield connections. COMMAND SMFI products are generally shipped with plastic protectors and are available with pressed steel protectors.

We also offer cast-steel (with lift bail and certification on request) thread protectors.
Cast-steel thread protectors are ideal for safe handling and protecting swivels, drill collars, tool joints, and wear subs. These protectors feature API precision machined shoulders and threads.

We offer all standard oilfield size thread protectors including for proprietary connections.

Pressed Steel Thread Protectors

Connection	Pin Protector Weight (lbs)	Box Protector Weight (lbs)	Weight per Set (lbs)
NC23	4	6	10
2-2/4 REG	4	6	10
NC26	4	6	10
2-3/8 IF	4	7	11
2-7/8 XH	7	6	13
2-7/8 IF	7	6	13
NC31	7	6	13
3-1/2 REG	7	8	15
NC35	10	9	19
3-1/2 XH	10	9	19
NC38	10	9	19
3-1/2 IF	10	9	19
3-1/2 H-90	14	11	25
NC40	14	11	25
4 FH	14	11	25
4 H-90	17	13	31
4-1/2 REG	17	13	31
NC44	17	13	31
4-1/2 FH	17	13	31
4 IF	18	14	31
NC46	18	14	31
4-1/2 H-90	18	14	31
5 H-90	21	18	39
5-1/2 REG	21	18	39
5-1/2 H-90	21	18	39
NC50	21	18	39
4-1/2 IF	21	18	39
5-1/2 FH	28	23	51
6-5/8 REG	28	23	51
6-5/8 H-90	28	23	51
NC56	28	23	51
7 H-90	29	25	54
NC61	29	25	54
7-5/8 REG	35	31	66
7-5/8 H-90	35	31	66
NC70	35	31	66
8-5/8 REG	55	46	101
8-5/8 H-90	55	46	101
25			

Benefits

Far less expensive than the cost of re-cutting threads, COMMAND SMFI thread protectors offer protection against damage during transportation, storage and handling.

Leader in Drilling Solutions

FOR GENERAL INFORMATION

Email: sales@command-smfi.com

L Command
5 Rue des Guérins 58200 Cosne-Cours-sur-Loire France

